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Abstract

Let {T,n > 1} be an arbitrary sequence of non-lattice random variables and let
{S,, n > 1} be another sequence of positive random variables. Assume that the sequences
are independent. In this paper we obtain asymptotic expression for the density function
of the ratio statistic R, = T,/S, based on simple conditions on the moment generating
functions of T, and S,. When S, = n, our main result reduces to that of Chaganty and
Sethuraman|/Ann. Probab. 13(1985):97-114]. We also obtain analogous results when T},
and S, are both lattice random variables. We call our theorems large deviation local limit
theorems for R,, since the conditions of our theorems imply that R, — ¢ in probability
for some constant ¢. We present some examples to illustrate our theorems.
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1. Introduction. Let {R,,n > 1} be a sequence of random variables which converge
in distribution to a non-degenerate random variable R. It is well known that convergence
in distribution does not guarantee convergence of the corresponding density functions
pointwise. Let g, be the probability density function (p.d.f.) of R, and let g be the p.d.f.
of R. A theorem which asserts that g, converges to g pointwise is known as a local limit
theorem. Now suppose R, converges to a constant ¢ as n — oo. Let {r,,n > 1} be a
sequence of real numbers bounded away from ¢. A theorem which obtains the limit of
gn(rn) or an asymptotic expression for gn(rn) is known as a large deviation local limit
theorem. The event {R, > r,} is known as a large deviation event. The study of the
probabilities of large deviation evenis and its many uses are well described in the books

by Ellis (1985) and Varadhan (1984).

Let {Tn, n > 1} be an arbitrary sequence of random variables and let {S,, n > 1} be
another arbitrary sequence of positive random variables. Assume that the two sequences
are independent. In this paper we obtain large deviation local limit thoerems for the ratio
statistic R, = T, /Sy, based on some mild and easily verifiable conditions on the cumulant
generating functions of T, and S,. In statistical applications T,, can be viewed as an
estimate of a location parameter and S, can be viewed as an estimate of a scale parameter
and a function of the ratio statistic R, = T,/Sn can be used to test a hypothesis about
the location parameter. In the case where T}, is the sum of i.i.d. random variables and S,
is also the sum of i.i.d. positive random variables the conditions of our theorems are easily
verified and the conclusion of our theorems agrees with the heuristic result of Daniels
(1954). In the case where S, is taken to be degenerate at n, our results reduce to the
theorems of Chaganty and Sethuraman (1985). However, one should note that Condition
(C) of our main result, Theorem 2.1, is weaker than Condition (C) that appears in the

paper of Chaganty and Sethuraman(1985).

The organization of this paper is as follows: In Section 2 we consider the case where
T, is a nonlattice random variable and S, is a positive random variable independent of

T., and obtain an asymptotic expression for the p.d.f. of R, = T,/Sn. In Section 3 we
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consider lattice valued random variables T,, and S, and obtain asymptotic expressions for
the probability P(T, = r,Sp). We illustrate the usefulness of our theorems with three

examples in Section 4.

2. Main Results. Let {T,,n > 1} be an arbitrary sequence of nonlattice random
variables and {Sn,n > 1} be a sequence of positive random variables. Let ¢;, and ¢3n
denote the moment generating functions of T,, and S, respectively. Assume that ¢,,(2) is
nonzero and analytic in ; = {2 €¢: |2] < ¢;} for ¢ = 1,2, where ¢ denotes the set of all
complex numbers and ¢;, 1 = 1,2, are some positive constants. Let {a,} be a sequence of

real numbers such that a, — oco. Let

(2-1) binle) = - logdin(e), zEM, i=1,2

n

Let J; = (—by, bi), where 0 < b; < ¢, for i = 1,2. We are now in a position to state
the main theorem of this section. Theorem 2.1 below obtains a large deviation local limit

theorem for the ratio statistic R, = Tn/Sh.

THEOREM 2.1. Assume that the two sequences {Tp, n > 1} and {S,, n > 1} are inde-
pendent. Let {r,} be a bounded sequence of real numbers such that there exists a sequence

{7n} contained in J, satisfying

(2-2) in("n) — Paan(—Tan) =0

and r,7, € J; for all n > 1. Assume that the following conditions are satisfied:

(A) There exists B; such that |¢Yn(2)| < Bi forn >1and z€ 1, 1 =1,2.

(B) There exist o; > 0, 1 = 1, 2, such that ¥, (rn) > a1 and ¥3,(—ra™n) > a3 for all
n>1.

(C) For any given é§ > O, there exist 0 < n < 1 and q > 0 such that

G1n(ra +1t) |1/

2-3 limsup su
(2-3) P sup | =

nojt|>6

<n
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and

(2-4) sup |3, (—rn(rn +it))| = O(a}).
|t|>6

(D) There exist p > 0, £ > 0 such that

— 00

Grn(rn +it) |72

¢ln(7n)

dt = O(al).

Then an asymptotic expansion for the density function g, of T, /S» at the point ry

is given by

(2-6)
\/Ewlln(—rnrn)

9n(m) = G () + 12 (—rara))]

L

1/2 expl{an(¥in(Tn) + ¥2n(—7rn7n))] [1 + O(_l—

).

an

We shall postpone the proof of the theorem until the end of Lemma 2.9. At this point

some remarks about the conditions (A) thru (D) are in order.

Remark 2.2. Condition (A) of Theorem 2.1 requires that ¢, and 12, be bounded
uniformly in n in a circle around the origin in the complex plane. Therefore the derivatives
of Y¥in, 1 = 1, 2 are also uniformly bounded in a neighborhood of the origin and hence
E(T.)/an, Var(Tp)/an, E(Sn)/an and Var(S,) are all uniformly bounded in n. Thus,
we can find a subsequence {m} such that T,,/a, and Sn/a, approach constants in
probability as m — oo. Therefore the ratio statistic Ry = Trn/Sm converges to a constant

in probability as m — oco.

Remark 2.3. Condition (D) of Theorem 2.1 implies that the characteristic function
(c.f) @1n(Tn + it)/d1n(7s) is absolutely integrable for sufficiently large n and hence the
random variable corresponding to this c.f. is absolutely continuous. Therefore, given 6§ > 0,
for each n > ny we can find 0 < n,, < 1 such that

(2'7) sup |¢ln(7n + it)/¢1n(rn)ll/an < Nn.
[t|>6




Condition (C) requires that the limsup,, (1) should be less than 1. We use this condition
mainly in Lemma 2.7 to show that the term I, defined in (2-15) goes to zero exponentially

fast.

Remark 2.4. Condition (D) guarantees the existence of the density function of 7, and
permits the use of the inversion formula to get an expression for the p.d.f. of T,,. This
condition is also used to show that the term [, defined in (2-15) goes to zero exponentially

fast.

Remark 2.5. It is interesting to note that if S, is a non-lattice random variable the

conclusion of Theorem 2.1 holds if ¢, is replaced by ¢2, in (2-3).
We will need the following Lemmas 2.6 thru 2.9 in the proof of Theorem 2.1.

LEMMA 2.6. Let ¢;, be as defined in (2-1), for 1 = 1,2. Assume that Condition (A) of
Theorem 2.1 holds. Fori = 1,2, let

it)? :
(28)  Runlr +it) = un(r + it) — tin(r) — (@)l (r) = gt (r) = CX gy

2 6
and
. . : t)?
29) Rl +it) = Galr +i8) = Yhalr) ~ (0005 () ~ ()
Then the following holds:
. (0) (5] < —KPi >
(2-10) :::I;: Y. (2)] < (e~ b)* forall k> 1

where Ul ={z€¢: |z| < b}, t=1,2. Also there exists 6o > O such that whenever

Itl < 50’

. 2ﬂ,'t4 .
2-11 sup |Rip(r +1t)| < ——— for 1 =1,2
( ) TG.I’).' | "t( )‘ (C;’ . b()‘
and

: 20,[t]3

2-12 su R T+1t)| < —m—MmM8—.
( ) TE.Il)gl "( )l—- (Cg-bz)‘




Proof. The proof of this lemma follows from Cauchy’s theorem and is similar to the

proof of Lemma 2.10 of Chaganty and Sethuraman (1985) and hence is omitted.

The next Lemma 2.7 shows that the term I, appearing in the proof of Theorem 2.1

goes to zero exponentially fast.

LEMMA 2.7.  Let ¢, be as defined in (2-1), for1 = 1,2. Let {r,} be a sequence of real
numbers. Assume that (2-2) and conditions (A) thru (D) of Theorem 2.1 are satisfied. Let

(2-13) fa(2) = ¥1a(2) + Y20(—Tn2)

and

(2-14) Du(t) = ¥30(=ra(rn +it)) /¥2n(—Tn7n).
Then

"y 1/2
(2-15) I = [a—"f%r(—'ﬁ} / explan(fn(tn + 1) — fr(m))] Dp(t) dt
1t|>6:

goes to zero exponentially fast for all 6§, 0 < 8, < &y, where &y is as in Lemma 2.6.

Proof. Note that

(2-16) Hril < [h%;(r—n)‘] " /

|t128,

exp [an(f,,('r,, +it) — f,,(r,,))]l Dn(t) dt

Substituting ¥1,(2) + ¥an(—rnz) for f,(z) in the integrand we get

(1] < [&x_fffﬁtl] /2 /

Sin(tn + 1) | | ¥on(—Tn(rn + tt))

d
2r ¢1n(7'n) ¢§n(—rn'r,, ’ ¢
It1>6,
anfr'»'(fn)]l/z [ Van(=Tn(rn +it))‘ S1n(Tn + it) H/“"]
s [ 2 Izggl Van(—TnTn) ®1n(n)
T ¢ln(7'n + 1t) t/an
- 7 PinlTn T+ 1) d
17 g / B1n(7n) ‘

—00




where £ is as in Condition (D). Using (2-10) and Conditions (B) thru (D) we get for

sufficiently large n,

In] < O(a@FP+7)) pan(1-t/an)

Y

(2-18) = O(alfTP*3)) gmmilan-0)

where 7, = —log(n) > 0. Hence I, goes to zero exponetially fast since a, — oo as
n — o0o.

We need the following Lemma 2.8 in the proof of the next Lemma 2.9.

LEMMA 2.8. Let ¢;,, be as defined in (2-1), fori = 1,2. Let {r,} be a sequence contained
in Jy satisfying (2-2) and r,7, € Jz for alln > 1. Assume that Conditions (A), (B) of
Theorem 2.1 hold. Let D,(t) be as defined in (2-14) and let

(2-19) L.(s) = [exp(zn(s))Dn(\/%) — 1 - z,(s)]

where
" o3 +.3.3
18 ir_. 8
Zn(s) = [ - 6\/(; ;’;(Tn) + 6\;‘1—"—11);,::(—7717'7;)
(2-20)

+anR1n(rn+i > )+anRzn(—rn(rn+i s

Van )

Then there exists 6;, 0 < 6; < 6p, such that

" 1/2 2
(2-21) Qn = }:LZ(;L)J / exp ( — i%“ﬁ)Ln(s) ds = O(a—l—).
l8|<\/@n 6, "

Proof. Let 6; be less than 6§, where 6 is as in Lemma 2.6. Using (2-19) we can write

Qr as the sum of two integrals as follows:

(2-22) o g
o= | ZET [ e (-2 [(enento) - 1~ 20(9) Da() | 6
|a}< /anbs
BT [ e (- ) o oa( ) 1]
lsl</@n 6

= in + Qn2 (SaY)'




We complete the proof of the lemma by showing that Q,, = O(1/a,) for: = 1,2. In order
to show that Qn,, = O(1/a,), we get an upper bound for jexp(z,(s)) — 1 — z,(s)i first by
obtaining an upper bound for z,(s). For [s| < \/a,6;, using Condition (A), (2-10) and
(2-11) we get that

lsis [ 1 7|38 J 34[ 25, 2r23, ]
i I < —_ n ‘
() S T = T a6 e b T o by
(2-23) 2 [ Bi 30, } 2 2[ 28 | 2r'3 ]

S e mnE T ot T e 60 (e b))

=s*M(6)  (say)
where r = supir,|. Let 6, be such that M(6;) < «;/2. We are now in a position to show
that Qn; = 1'(z)(l/an). Using Condition (B) and (2-10) it is easy to check that f//(rn) > a;
and f)(rn.) = O(1) and Dﬂ(T;,f) = O(1) for |s| < \/ap6,. Therefore

@20 Qulso) [ e(- 1) |exp(za(s)) — 1~ 2n(s) ds.

le|<\/ané,
Using the simple inequality |exp(z) — 1 ~ z| < |z|? exp(|2]) and the upper bounds in (2-23)
for z,(s) we get that

Qmi<o(d) [ ew (- Sla-2mis)

n

[8]<\/anby
(2-25) [!sl3ﬁ1 |s|3r3 B2 26,54 2Byrist  1°
X + + + = d
(cx —b1) ' (2~ b2)° ' \an(er -~ b1)%  van(ez — b2)%]
1
—0(;1:)

since M(6;) < /2. The second integral Q,; can be handled similarly after noting that
for is; < \/anéy,
8 )] = Tirms Yha(orarm) rhs? g (orama) | Re(ralrn * 1))

T Van Yaa(-rtatn)  an ¥oa(-TaTa) Y20 (—TnTn)
Using Condition (B), (2-26) and Lemma 2.6 we can easily verify that Qn2 = O(1/a,).

(2-26) [D,,(

This completes the proof of Lemma 2.8.
The next lemma shows that the term I, appearing in the proof of the main Theorem

21is 1+ 0(1/ayn).




LEMMA 2.9. Let f,(2z) and D, (t) be as defined in (2-13) and (2-14) respectively. Let
6, > 0 he as in Lemma 2.8. Assume that Conditions (A) and (B) of Theorem 2.1 hold.

Tiuen
" 1/2
Iz = {‘—lﬂ;ﬁﬂg"—)] / explan(fn(mn +it) = fu(72))] Da(t) dt
(2-27) <t
1
=14+ 0(—).
~o(l)

Proof. Making a change of variable t = s/,/a,, we get that

1" 1/2
(2-28)  Inp = [fL;;L)] / exp(an(fn(ra +15/y/@n) ~ fa(7a))] Dn(\;a—) ds.
[8]<\/an b, "
Note that for |s! < /a6, we can write
(2-29) a(f(r +'s)—f('r))——£"(r)+ (s)
- n n n 1m n n - 2 n n zn S .
where z,(s) is as defined by (2-20). Hence
rru 1/2 2
fn(rn) $ 1 s
I = v exp [ - ff:z'(rn) -+ zn(s)JDn(m)ds
lsl</anb;
(2-30) /
r pn 1/2 2
- .fnT(;fl / exp [ = = 1(r))[1+ zn(s) + La(s))ds

|8|<\/an51

where L,(s) is as defined by (2-19). The r.h.s. of (2.30) can be written as the sum of three
integrals. The first integral is 1 + O(1/ay,) follows from Mill’s ratio. Using (2-23) we can
easily verify that the second integral is O(1/an). The third integral is O(1/a,) as shown
in Lemma 2.8. Thus Inz = 1+ O(1/ay). This completes the proof of Lemma 2.9.

We now proceed with the proof of the main Theorem 2.1.

Proof of Theorem 2.1. Let Fy,, F,, and G, be the distribution functions of T,, S,

and R, = T,/Sn respectively. Since T, and S, are independent we have G,(r) =

10




x0

/ Fin(ry) dF2.(y), for any r. Hence the probability density function, g,, of R, is given
)

by

(2-31) gn(r) = /Ooo yf1a(ry) dF2n(y)

where f,, is the p.d.f. of T,,. Proceeding as in the proof of Theorem 2.1 of Chaganty and
Sethuraman (1985) we get that

(2-32) fin(z) = 51; /—00 G1n(r +1t) exp(—z(r +1t)) dt

for any 7 € J;. Therefore

1 R B . .
gn(rn) = o /o /_ Y b1n(r + 1t) exp(—ray(r + 1t)) dt dF2n(y)

= 2i7r /_o; S1n(r + 1t) [/0oo yexp(~rny(r +it)) dFzn(y) | dt
(2-33)

- 2%/_05 uin(r +it) $h, (—rn(r + it)) dt

a oo

=2 exp [an(zl)ln(r +1t) + Yap(—rn(r + 1t)))] Yo, (—ra(r + 1t)) dt.

27 J o

We note that the integral on the r.h.s. of (2-33) remains the same for all 7 in J;.
The saddle point method suggests that the appropriate choice of 7 is 7, which satisfies the
equation (2-2), that is, ¥{,(7n) = rn¥5,(—7n7s). Replacing 7 by 7, in the r.h.s. of (2-33)

we can rewrite

gn(rn) = dn /°° explan (Y1n(Tn + 1t) + Yon(—ra(rn + 1)) |05, (—rn(rn +it)) dt

27 J_ oo
2-34
(2-34) _ V@i (=nTn) €xp(an(¥1n(7n) + Y20 (=TnTn))] ,
(2 (0 (ra) + 7200, (=rnra))] 2
where

ar 1/2 roo
(2-35) I, = [‘—1—"&(—"2} / explan(fn(tn + it) = fn(7a))] Dn(t) dt

2m oo

11




where fn(z) and D, (t) are as defined in (2-13) and (2-14) respectively. We can write the
integral on the r.h.s. of (2-35) as the sum of two integrals, the first integral over the region

{t >6,} and the second integral over the region {|t| < §,}. Thus
In = n1 t In2

where I, and I, are as defined in (2-15) and (2-27) respectively. Lemmas 2.7 and 2.9
show that I,; = O(1/a,) and I, =1+ O{1/a,). Thus

I, =1+0(1/a,)

and this completes the proof of the Theorem 2.1.

In the case where T, and S, are chosen to be the sums of n i.i.d. random variables,
the Conditions (A) thru (D) of Theorem 2.1 are very much simplified and they are easy to
verify. We state this case as a separate theorem because of its importance in mathematical

statistics. Later, in Section 4 we shall apply Theorem 2.10 to some examples.

THEOREM 2.10. Let {X,,n > 1} be a sequence of i.i.d. non-lattice random variables
with moment generating function ¢,. Let {Y,,n > 1} be a sequence of i.i.d. positive valued
random variables with moment generating function ¢,. Assume that the two sequences
are independent. Let ¢;(z) be non-vanishing and analytic in Q; = {z €¢: |2] < ¢} for
t =1,2. Let J; = (—b;,b;) where 0 < b; < ¢;, ¢+ = 1,2. Let {r,} be a sequence of real

numbers such that there exists {r,} contained in J, satisfying

(2-36) V() = rah(=rara) =0

and rpt, € J2 for all n > 1. Assume that the following conditions hold:

(A1) There exist B; < oo such that |;(z)| < B; for all z € Q1,1 = 1,2.

(B1) There exist a; > 0,1 = 1,2, such that ¢¥{(7n) > a1 and Y4(—rn7n) > a3 for alln > 1.
(C1) For any given § > 0, there exists ¢ > 0 such that

(2-37) sup [¥3(=rn(rn +it))| = O(n7).

12
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(D1) There exists £ > 0 such that

e

o0 n ‘t
(2-38) limsup/ S T 1 M < o

n —00 | 451(7'71.)

LetT,=X;~.+Xpand S, =Y +..+Y,. Ifg, denotes the p.d.f. of R, =T, /S, then

~ VA (=raTn)
(2-39) gn(rn) = 27 (WY (1n) + r20Y(—rntn))]1/?

exp[n(¥1(rm) + wa(~rn7a))][1 + O().

Proof. The conclusion of this theorem follows easily from Theorem 2.1 where we choose

a, = n. Note that in this case (2-3) is automatically satisfied (see Remark 2.3).

3. The Lattice Case. In this section we obtain large deviation local limit theorems for
the ratio statistic R, = Tn/S, analogous to the results of Section 2 in the case where T,
and S, are independent lattice valued random variables. The main result of this section is
stated as Theorem 3.1. We shall not deal with the case where T, is lattice valued and S,, is
non-lattice valued, since this problem can be reduced to the case covered by Theorem 2.1 if
we consider the ratios S, /T,; and S, /T,  where T,} and T, are the positive and negative

parts of T, respectively. We shall continue to use the notation introduced in Section 2.

THEOREM 3.1. Let {T,,n > 1} be a sequence of lattice valued random variables with
spans {h, > 0, n > 1}. Let {Sn,n > 1} be an independent sequence of positive lattice
valued random variables. Let {r,} be a sequence of real numbers as in Theorem 2.1
satisfying (2-2). Assume that T, and S, satisfy Condition (A) of Theorem 2.1. Further
replace Conditions (B), (C) and (D) by the following:

(B') There exists a; > 0 such that ¢{,(r,) > a; forn > 1.

In

(C') Given 6 > 0, there exists n, 0 <n < 1, such that

¢ln(fn + lt) 1/an

3-1 lim u
& P scrigarnal B1n(rn)

n 6<|t|<x/h,

<.
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(D’') There exist positive constants p and £ such that

oo r i ¢/an
(-2 | "’————‘;fn'z;’) O 4 = o(ar)
Let P,(rn) = P(Tn = rnSy,). Then
\/a: exp [an(wln(fn) + ¢2n(_rn7n))] . 1
(3-3) Pn(ra) = == {1+ 0(—)].
n (27 (WY (rn) + 2 (=rara))] an

Proof. Consider
Pn(rn) = P(Tn = rnsn)
(3-4) =Y P(Tn = ray) P(Sn =)
v

since T, and S, are independent. Proceeding as in the proof of Theorem 2.2 of Chaganty

and Sethuraman (1985) and using Condition (D’) we can show that

hn ﬂ'/h,. .
(3-5) P(Tp =rpy) = 5;/ . G1n(Tn + 3t) exp(—rny(rn +1t)) dt

Combining (3-4) and (3-5) and interchanging the order of summation and integration we

get that

hn x/ha

Pp(rn) = Py / G1n(rn + it) Gan(—Ta(rn +it)) dt
—x/hn

ho [*/hn :
(3-6) = | Ih exp [an('/)ln('rn +1t) + Yan(—rn{m + 't)))] dt.
Therefore

x/hn
\’/l-a_npn(rn) = \g-—jr—_n- —e/h exp [an(wln(rn + t.t) + ¢2n("rn(7'n + 't)))] dt

(3_7) _ &Xp [an(¢1n(7n) + tpZn(“rn"'n))] I.

[27(¥Ta(rn) + r2ug (—rata))]V/?
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where

n T 1/2 ’r/hn
(3-8) I = [—fzﬁ} | explantfalrn +it) = falr):
T _"’/hn

and fn(z) is as defined in (2-13). Using Conditions (A), (B’), (C’) and (D’) and imitating

Lemmas 2.6 thru 2.9 we can show that

(3-9) I,.=1+o(i).

an
The two identities (3-7) and (3-9) complete the proof of Theorem 3.1.

Remark 3.2. When a, = n and S, is taken to be degenerate at n, our Theorems 2.1
and 3.1 reduce to Theorems 2.1 and 2.2 respectively of Chaganty and Sethuraman (1985).
Thus the main results of this paper generalize the results of Chaganty and Sethuraman

(1985).

4. Applications. In this section we present four examples to illustrate the theorems of
Sections 2 and 3. These example cover all the combinations of non-lattice and lattice cases
for T, and S,. The examples clearly demonstrate the wide applicability of our theorems.
The conditions of our theorems are easily verified in these examples because both T, and
S, are sums of n i.i.d. random variables. One should note that in all these examples
the exact density does not have a closed form, however our theorems provide a simple

asymptotic expressions for the density functions.

Example 4.1. Let T, be distributed as Normal with mean 0 and variance n. Let S,
be distributed as chi-square with n degrees of freedom. Assume that T, and S, are

independent. The m.g.f.’s of T,, and S,, are given by

(4-1) é1n(2) = exp(nz?/2), |2| < o0
and
(4-2) $2n(2) = (1 —22)""2,  |z] < 1/2.
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Let {rn} be a sequence of real numbers such that sup, |[r,| = r < 1. Let 7, =
(-1 + /1 + 8r%)/4r,. We can choose 0 < ¢; < 00,0 < ¢z < 1/2and 0 < b, < ¢,
for ¢ = 1,2 such that Condition (2-2) and Conditions (A) thru (D) of Theorem 2.1 are
satisfied with a, = n. Let g, be the p.d.f. of T,/Sn. Then by the conclusion of Theorem

2.1 we have

(4-3) gn(rn) =

bt : 2+ 0(3))

n X T
VZr (14 2rara) 3 71(1 + 272)172 ©F [

Note that in this example both T, and S, are non-lattice valued random variables.

Example 4.2. Let T, be as in Example 4.1. Let S, be Poisson with mean n. Assume

that T, and S, are independent. The m.g.f.’s of T, and S,, are given by

(4-4) b1n(z) = exp (n2?/2), |z| < oo
and
(45) $2n(2) = exp (nfexp(z) ~ 1)), 2] < oo

Let {r,} be a bounded sequence of real numbers. Let 7, be such that the following

equation is satisfied:
(4-6) Tn = Tn eXp(—TaTs).

We can choose finite positive constants ¢;, ¢z and b;, b, such that 0 < b; < ¢, for
i = 1,2 and Condition (2-2) and Conditions (A) thru (D) of Theorem 2.1 are satisfied
with @, = n. Note that the ratio random variable |R,| = |T,,/S,| takes the value oo
with probability exp(—n) and possess an improper density function g,(r) on the interval

(—o00,00). By the conclusion of Theorem 2.1 we have

vVn exp(—rnaty)

(4-7) gn(ra) = Vor (1+ ,-n‘rn)l/2

exp [nr:/Z + n(exp(—rntn) — 1)] 1+ O(%)]

i6




Note that in this example we have considered non-lattice over lattice random variables.

Example 4.3. Let T,, and S, be distributed as Poisson with means nA; and nA, re-

spectively. Assume that T,, and S, be independent. The m.g.f.’s of T,, and Sp are given

(4-8) $1n(2) = exp(nAi(exp(z) — 1)), |z] < oo
and
(4-9) $2n(2) = exp(nAz(exp(z) — 1)), |z{ < o0

Let {r.} be a bounded sequence of positive rational numbers. Let

Tn = [log(rs) + log(A2/A1)]/(1 + rn).

We can find constants ¢;, ¢; and by, b; such that 0 < by < ¢, for + = 1,2 and
Condition (2-2) and all the Conditions (A), (B'), (C) and (D’) of Theorem 3.1 are satisfed

with an = n. Let Py(rn) = P(Tn = rnSy). Then from the conclusion of Theorem 3.1 we

get

e [n(A (ex (Tn) - 1) + A (e (‘Tn'rn) - 1)) 1
(10 VRPre) = T T T s oo 72 so)
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